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1. INTRODUCTION 

Local ecological knowledge (LEK) of natural resource users, also known as traditional ecological knowledge is 

constructed while local people interact with natural ecosystems through their daily routines like fishing, farming or 

hunting [Arlinghaus and Krause 2013]. Additionally, resource users may share information about environmental, policy 

or social changes across their social networks [Barnes et al. 2016], allowing them to accumulate and refine knowledge 

and observations across years and locations. Such LEK constitutes a valuable source of information and can 

complement scientific knowledge about natural resources abundance, resource dynamics, and interactions with humans 

in data-poor situations [Gray et al. 2012]. However, information embedded in LEK is predominantly qualitative and 

thus cannot be easily integrated with scientific assessments which are primarily quantitative [Laborde et al. 2011]. Yet, 

because of inability to measure uncertainty of information obtained through LEK, and also methodological 

insufficiency, LEK may not be easily translated into accurate assessments and predictions about natural resources 

abundance and how they respond to various management strategies or external perturbations. To address these 

challenges, we explored how emerging internet technologies can be used to harness resource users’ collective 

intelligence (CI) to support natural resource management. Here we present reports of two original research studies 

[Aminpour et al. 2020 and Gray et al. 2020] in which we used fisheries examples to empirically demonstrate how CI of 

local fishing communities can be harnessed through pooling their LEK to provide valuable information for sustainable 

resource management. In these examples, we used synchronous social-swarming technologies [Rosenberg 2015] and 

asynchronous wisdom of crowds (WOC) [Surowiecki 2004] techniques for harnessing resource users’ CI to (a) estimate 

fish abundance, (b) predict human pressures on fish resources and (c) model complex human-fish interdependences.     

2. REPORTS OF TWO ORIGINAL RESEARCH 

2.1 Social Swarming, Wisdom of crowds, and Striped Bass conservation  

In the first study [Gray et al. 2020] we examined how synchronous social-swarming technologies and asynchronous 

WOC techniques can be used as potential conservation tools for estimating the status of Striped Bass (Morone saxatilis) 

population in Massachusetts. We reached out to three of the largest clubs for recreational Striped Bass fishing in the 

state, and asked members to independently complete an online survey and participate collectively in an online-swarming 

activity in the spring of 2017. The online survey prompted anglers to answer questions designed to extract their LEK.  

To obtain insight about size demographics of the fish population, participants were asked to specify the percentage of 

Striped Bass caught last year (i.e. 2016) that fell into certain size classes. Anglers were also required to estimate the 

number of licensed recreational fishermen in Massachusetts. We defined results from the crowd as the average of survey 

responses to promote WOC effect. The second phase of our experiment encouraged individuals to give estimates 

through real-time online collaboration. The activity incorporated the use of Swarm AI technology [Rosenberg 2015] as 

a tool to answer a subset of questions from the first phase. Swarm is an online platform that allows users to interact 

concurrently to make predictions and answer questions [Rosenberg and Pescetelli 2017]. The platform is synchronous, 

meaning that users can explore decision-spaces together and the software structures these online social groups of users 
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through a process of ‘social swarming’ in real-time intended to promote group convergence on a preferred solution. In 

our experiment participants were able to answer questions by collectively moving a “graphical puck” to select a response 

from among multiple choices (Fig.1c). Individual intent for selecting a particular answer was visible to others by 

showing small graphical magnets on the screen pulling the puck towards specific directions (i.e. intended choice). 

Although most questions exactly matched those in the survey, a handful were modified to fit the swarm’s format.  

Fig 1. Results of Striped Bass case study. (a) Crowd estimates of percentages of the fish population regarding the size class compared to empirical 

data. (b) Estimation error of individuals, independent crowd, and the swarm regarding the number of licensed recreational anglers in Massachusetts. 
(c) The online social-swarming platform asking question about size-frequency. (d) Swarming platform asking question about number of recreational 

anglers in MA. 

 

Within the framework of our research, participatory websites such as Swarm AI and the online survey served as 

functional tools to harness stakeholders CI. Based on their performance in our experiments, systems utilizing WOC 

ideology are more effective at making numeric predictions, compared to those which incorporate swarming, as 

exemplified by the swarm’s lower accuracy than crowd in estimating the number of active recreational anglers in 

Massachusetts (Fig. 1b). But more empirical data is needed to understand under what conditions these approaches can 

be applied to more data-poor conditions with high uncertainty. Both approaches, however, can be effective forecasters 

in certain settings. For example the crowd and swarm yielded valid results when classifying estimates at the extreme 

ends of the spectrum, such as the sizes of fish that occur most or least frequently. We offer a practical approach for 

using resource stakeholders to generate highly precise estimates, which mirror the empirical data collected by scientists.  



  3 

 

Collective Intelligence 2020 

2.2 Wisdom of stakeholder crowds, mental modeling, and Pike conservation 

In the second study [Aminpour et al. 2020] we explored the potential of harnessing the CI of natural resource 

stakeholders to produce accurate representations (i.e. models) of complex relationships between human and natural 

systems. Using an example of freshwater Pike (Esox lucius) fisheries in Germany, we showed that by aggregating the 

LEK held by stakeholders through graphical mental model representations, a crowd of diverse resource users produced 

an accurate prediction of human–environment relationships that is comparable to the best scientific knowledge. We also 

showed that the averaged mental model from a crowd of diverse resource users outperforms those of more homogeneous 

groups (Fig. 2). In this study, we collected graphical mental models of 218 stakeholders characterized as recreational 

anglers, angling club managers and fisheries managers through a fuzzy cognitive mapping task in a series of workshops. 

To leverage WOC effect, we used mathematical averaging techniques to aggregate the cognitive maps elicited as 

directed networks of nodes and weighted causal connections. Additionally, we ran two mental modeling workshops 

with 17 fishery scientists, each of whom had formal training and scientific knowledge in fishery resource dynamics and 

Pike ecology, to create a scientific reference mental model representing the best scientific understanding about the same 

ecosystem. We found that the network structure of the crowd mental model matched scientific understanding about the 

social–ecological interdependences driving pike fisheries. This was evidenced by evaluating agreement between the 

crowd mental model and the scientific mental model using network analysis. We also assessed the dynamics (functional) 

behavior of the mental models by simulating how changes in one or more nodes of the mental models affected the state 

of remaining nodes using auto-associative neural network method. We found again that the functional properties of the 

crowd mental model accurately matched scientific understanding about pike ecology [please see Aminpour et al. 2020 

for more detail]. 

Fig. 2. Aggregated mental models of fisheries stakeholder groups from left: recreational anglers, club managers, fishery managers, and the crowd of 

all stakeholder types. The mental model at the bottom shows the aggregation of scientific experts cognitive maps used as the reference point to 

evaluate the performance of stakeholder-driven mental models. The crowd model showed the highest similarity to the reference model.     

Although each group had biases leading to larger disagreements with scientific reference model, when combined 

together, the crowd model demonstrated remarkable similarity to the scientific experts (i.e., reference model), with 

highest agreement in terms of structure and dynamic behavior [see Aminpour et al. 2020 for the methods and 

visualization of the results]. Our work opens an avenue to involving stakeholders proactively in difficult management 

decisions, including system simulation, based on models that aggregate individual mental models resulting from online 

or other survey means. This can lead to improved analyses, the inclusion of LEK, and more equitable discussions.  
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3. CONCLUSION 

Our work applies to a broad domain of resource management problems in which stakeholders have relevant but diverse 

system knowledge. It is very encouraging that scientific information of complex ecosystem dynamics can be generated 

from a group of informed stakeholders. Thus, our work offers a practical approach for using crowds of resource users 

to generate high-quality system models which mirrors the knowledge of highly trained academics. These crowd models 

can be used as a concrete basis for developing strategies for better managing ecosystems in participatory and adaptive 

ways across many different natural resource and biodiversity conservation contexts, especially in data-poor situations. 
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